
Longest Common Subsequences



Here is an important practical problem that has a 
nice solution using Dynamic Programming.   We 
have two strings A and B and we want to find the 
longest possible string C that is a subsequence of 
both A and B.  When we say that C is a 
subsequence of A, we mean we can derive C from 
A by removing some of the elements of A.  



For example,  "Oi" is a subsequence of "Ohio" and 
"odor" is a subsequence of "Lord Voldemort.   The 
longest common subsequence we can make of 
“Oberlin College" and "Oberlin Conservatory" has 
length 11: “Oberlin Coe".  



Question: What is the length of the longest common 
subsequence of  CGAAGAT and GGTAGCT?

A. 2: AG
B. 3: GGA
C. 4: GGAT
D. 5: GGACT



Answer C – 4: GGAT



This is more than just a game.  In gene sequencing 
both genes and DNA strands are treated as strings 
of base elements represented by the letters GCAT.  
An exact match of the gene is unlikely, so 
researchers look for common subsequences of the 
gene and the DNA strand.  If the subsequence is 
most of the length of the gene sequence, the 
strand is regarded as containing the gene.

These strings are long -- a DNA strand has millions 
of base elements and even a simple gene has 
many thousands of elements.  Efficiency is 
important here.



We can easily find a recursive, inefficient function 
that gives the length of the longest common 
subsequence.  We will modify this in the usual 
dynamic programming way to get a more efficient, 
table-driven solution, and use the table to find the 
actual common subsequence.



Here is the recursive solution.  Let LCS(A, B) be the 
length of the longest common subsequence of A 
and B. Our base cases are when either A or B is the 
empty string, so the length of the common 
subsequence is 0.

If A and B start with the same letter, we can't do 
any better than to match this letter and recurse on 
the rest of the strings.  In this case our length is 
1+LCS(A.substring(1), B.substring(1)).



Finally, if the first letters of A and B don't match, we 
throw out the first letter of one of them and find 
the length of the longest common subsequence of 
what is left.  The result is

max( LCS(A.substring(1), B), LCS(A, B.substring(1)) 



Altogether we get the following:

int LCS( String A, String B) {
if (A.length() == 0 || B.length()==0)

return 0;
else if (A.charAt(0) == B.charAt(0))

return 1+LCS(A.substring(1), B.substring(1));
else

return Math.max(
LCS(A.substring(1), B), 
LCS(A, B.substring(1)));

}



Unfortunately this is massively inefficient.  If A has 
length n and B has length m and they have no 
elements in common, this checks each of the 2n

subsequences of A against each of the 2m

subsequences of B for a total of 2m+n comparisons 
before deciding they have nothing in common. 



For a more efficient solution we want to store 
partial results in a table.  For this it helps to use 
indexes.  Rather than recurse on substrings, we will 
leave the strings fixed and recurse on indexes: 
LCS(i, j) will be the length of the longest common 
subsequence of string A starting with index i and 
string B starting with index j. 



Translating the code to this is easy:

int LCS( int i, int j) {
if (i == A.length() || j==B.length())

return 0;
else if (A.charAt(i) == B.charAt(j))

return 1+LCS(i+1, j+1);
else

return Math.max(LCS(i+1, j),  LCS(i, j+1));
}



Now we do the usual dynamic programming trick.  
We will store the result of LCS(i, j) in a 2-
dimensional table.  Each time we enter the function 
we look to see if we have a table entry for that 
combination of i and j; if we do we just return it.  If 
we don't we recurse, and before returning the result 
we write it into the table



int LCS(int i, int j) {
if (Table[i][j] >= 0)

return Table[i][j];
else if (i==A.length() || j==B.length()) {

Table[i][j] = 0;
return 0;

}
else if (A.charAt(i) == B.charAt(j)) {

int t = 1+LCS(i+1,j+1);
Table[i][j] = t;
return t;

}
else {

int t = Math.max(LCS(i+1,j), LCS(i, j+1));
Table[i][j] = t;
return t;

}
}



This is vastly more efficient.  Each of the entries 
that does more than a lookup writes a value into 
the table.  If A has length n and B length m, there 
are only (n+1)*(m+1) entries in the table.  This 
version runs in time O(n*m), which is a huge 
improvement over O(2n+m).  For example if n and 
m are both 100 n*m is 10,000 while 2n+m is about 
1060.  



We can say even more.  Consider the table we get 
from the strings A="ABAC" and B="BAAC":

0: B 1: A 2: A 3: C 4

0: A 3 3 0

1: B 3 2 1 0

2: A 2 2 1 0

3: C 1 1 0

4 0 0 0 0 0

The [0][0] entry is 3; the value in the row below at 
[1][0] is also 3, so we threw out the first letter of 
"ABAC" and matched "BAC" against "BAAC".  The 
B's now match so we pair "AC" against "AAC".  The 
A's match so we pair "C" against "AC", then against 
"C".  This ends when Table[row][col] is 0. 



Here is code that looks through the table to find the 
best subsequence:

void PrintSubsequence() {
int row = 0;
int col = 0;
String s = "";
while (Table[row][col] > 0) {

if (A.charAt(row)==B.charAt(col)) {
s = s + A.charAt(row);
row += 1;
col += 1;

}
else if (Table[row+1][col] == Table[row][col])

row += 1;
else

col += 1;
}
System.out.println(s);

}


