
Longest Common Subsequences

Here is an important practical problem that has a
nice solution using Dynamic Programming. We
have two strings A and B and we want to find the
longest possible string C that is a subsequence of
both A and B. When we say that C is a
subsequence of A, we mean we can derive C from
A by removing some of the elements of A.

For example, "Oi" is a subsequence of "Ohio" and
"odor" is a subsequence of "Lord Voldemort. The
longest common subsequence we can make of
“Oberlin College" and "Oberlin Conservatory" has
length 11: “Oberlin Coe".

Question: What is the length of the longest common
subsequence of CGAAGAT and GGTAGCT?

A. 2: AG
B. 3: GGA
C. 4: GGAT
D. 5: GGACT

Answer C – 4: GGAT

This is more than just a game. In gene sequencing
both genes and DNA strands are treated as strings
of base elements represented by the letters GCAT.
An exact match of the gene is unlikely, so
researchers look for common subsequences of the
gene and the DNA strand. If the subsequence is
most of the length of the gene sequence, the
strand is regarded as containing the gene.

These strings are long -- a DNA strand has millions
of base elements and even a simple gene has
many thousands of elements. Efficiency is
important here.

We can easily find a recursive, inefficient function
that gives the length of the longest common
subsequence. We will modify this in the usual
dynamic programming way to get a more efficient,
table-driven solution, and use the table to find the
actual common subsequence.

Here is the recursive solution. Let LCS(A, B) be the
length of the longest common subsequence of A
and B. Our base cases are when either A or B is the
empty string, so the length of the common
subsequence is 0.

If A and B start with the same letter, we can't do
any better than to match this letter and recurse on
the rest of the strings. In this case our length is
1+LCS(A.substring(1), B.substring(1)).

Finally, if the first letters of A and B don't match, we
throw out the first letter of one of them and find
the length of the longest common subsequence of
what is left. The result is

max(LCS(A.substring(1), B), LCS(A, B.substring(1))

Altogether we get the following:

int LCS(String A, String B) {
if (A.length() == 0 || B.length()==0)

return 0;
else if (A.charAt(0) == B.charAt(0))

return 1+LCS(A.substring(1), B.substring(1));
else

return Math.max(
LCS(A.substring(1), B),
LCS(A, B.substring(1)));

}

Unfortunately this is massively inefficient. If A has
length n and B has length m and they have no
elements in common, this checks each of the 2n

subsequences of A against each of the 2m

subsequences of B for a total of 2m+n comparisons
before deciding they have nothing in common.

For a more efficient solution we want to store
partial results in a table. For this it helps to use
indexes. Rather than recurse on substrings, we will
leave the strings fixed and recurse on indexes:
LCS(i, j) will be the length of the longest common
subsequence of string A starting with index i and
string B starting with index j.

Translating the code to this is easy:

int LCS(int i, int j) {
if (i == A.length() || j==B.length())

return 0;
else if (A.charAt(i) == B.charAt(j))

return 1+LCS(i+1, j+1);
else

return Math.max(LCS(i+1, j), LCS(i, j+1));
}

Now we do the usual dynamic programming trick.
We will store the result of LCS(i, j) in a 2-
dimensional table. Each time we enter the function
we look to see if we have a table entry for that
combination of i and j; if we do we just return it. If
we don't we recurse, and before returning the result
we write it into the table

int LCS(int i, int j) {
if (Table[i][j] >= 0)

return Table[i][j];
else if (i==A.length() || j==B.length()) {

Table[i][j] = 0;
return 0;

}
else if (A.charAt(i) == B.charAt(j)) {

int t = 1+LCS(i+1,j+1);
Table[i][j] = t;
return t;

}
else {

int t = Math.max(LCS(i+1,j), LCS(i, j+1));
Table[i][j] = t;
return t;

}
}

This is vastly more efficient. Each of the entries
that does more than a lookup writes a value into
the table. If A has length n and B length m, there
are only (n+1)*(m+1) entries in the table. This
version runs in time O(n*m), which is a huge
improvement over O(2n+m). For example if n and
m are both 100 n*m is 10,000 while 2n+m is about
1060.

We can say even more. Consider the table we get
from the strings A="ABAC" and B="BAAC":

0: B 1: A 2: A 3: C 4

0: A 3 3 0

1: B 3 2 1 0

2: A 2 2 1 0

3: C 1 1 0

4 0 0 0 0 0

The [0][0] entry is 3; the value in the row below at
[1][0] is also 3, so we threw out the first letter of
"ABAC" and matched "BAC" against "BAAC". The
B's now match so we pair "AC" against "AAC". The
A's match so we pair "C" against "AC", then against
"C". This ends when Table[row][col] is 0.

Here is code that looks through the table to find the
best subsequence:

void PrintSubsequence() {
int row = 0;
int col = 0;
String s = "";
while (Table[row][col] > 0) {

if (A.charAt(row)==B.charAt(col)) {
s = s + A.charAt(row);
row += 1;
col += 1;

}
else if (Table[row+1][col] == Table[row][col])

row += 1;
else

col += 1;
}
System.out.println(s);

}

